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AbstracﬂRan_domness extractors are an important building functionsf .. Note that in a slight abuse of notation, we use
block for classical and quantum cryptography. However, for the same letter for the actual set of inputs/outputs as well as

many e_lpplications it is crucial that_the extractors are quantum- s size. \We say thaxt is a(k, !)-extractor if for any random
proof, i.e., that they work even in the presence of quantum - . R
variableX taking values inN,

adversaries. In general, quantum-proof extractors are poorly

understood and we would like to argue that in the same way ) —
as Bell inequalities (multi prover games) and communication Humin(X) - I9g Paucss (X ) # k
complexity, the setting of randomness extractors provides a =$ fy,(X) is!-close toUy,,, Q)

operationally useful framework for studying the power and . . L .

limitations of a quantum memory compared to a classical one. Where Up is uniformly distributed onD and independent
We start by recalling how to phrase the extractor property as a 0Of X and U,; denotes the uniform distribution ovev! .
quadratic program with linear constraints. We then construct a As mentioned in the equation, the min-entroy,;,(X) is
semidePnite programming (SDP) relaxation for this program that  4epned by the maximum probability of success in guessing a

is tight for some extractor constructions. Moreover, we show that . N
this SDP relaxation is even sufpcient to certify quantum-proof sourceX with only the knowledge of the distribution of X .

extractors. This gives a unifying approach to understand the [N this case, we simply havd,in(X) = " log maxp(x). To
stability properties of extractors against quantum adversaries. quantify the distance between distributions, we use the total
We analyze the limitations of this SDP relaxation and propose variation distancé.Equation (1) can thus be more explicitly

a converging hierarchy of SDPs that gives increasingly tight \yritten as
characterizations of quantum-proof extractors.

Finally, we discuss more generally how to quantize quadratic Lk 1! ! 1"
optimization programs with linear constraints and develop a % &N, p(x)" 2 =$ D " p(x) " M::' .
converging semidePnite programming hierarchy. We consider two seD "Ty= "
examples other than randomness extractors. For the quadratic yeM fs(2)
program corresponding to the winning probability in a two- (2

prover game (also known as a Bell inequality), our quantization ;
captures the entangled value of the game. If instead the quadratic Even though the concept was already present in [3], [4], the

program is a maximization of the success probability over encod- debnmqn of randomness ex.tractors was formulated 'n [23].

ing strategies for a given channel, the quantization corresponds The typical example of a famil{/f ;} ; of functions that satisfy

to optimizing over entanglement assisted encoding strategies.  this condition are randomly chosen functions. In fact, one can

show [26], [30] that choosind functionsf, independently
random among all the functions frodd to M satisbes

guation (2) with the following parameters

Randomness extractorsN A randomness extractor is a
procedure to distill from a weakly random system as mu
(almost) uniform random bits as possible. Such objects a
essential in many cryptographic protocols, in particular in m=k" 2log(1!)" O(1) and (3)
quantum key distribution and device |ndeper_1dent randomness d=log(n" k)+2log(1/! )+ O(L). (4)
expansion [2], [10], [24], [27], [36]. In this context, the
process of transforming a partly private string into one that e even know that these parameters cannot be improved
almost uniformly random from the adversary@s point of viegxcept for additive constants [26]. Probabilistic constructions
is called privacy amplibcation [3], [4]. Even though we takére interesting, but for applications we usually want the
a cryptographic point of view in this submission, we shoultinctionsf to be efbciently computable. The most famous
mention that randomness extractors are very useful combigxample of an explicit extractor is given by two-universal
torial objects in particular in the study of the computationdlash functions [3], [4], [15]. However, this construction has
power of randomness (see [35] for a survey). More precise®y, seed sized of the order ofn, very far from thelogn
a randomness extractor is described by a family of functioAghieved by probabilistic constructions (4). Constructing ef-
Ext = {f,}.ep Wheref, : N I M. We useN = 2n Pciently computable extractors that match the parameters of

to denote the Input system (conS|st|ng of strlngsnoblts), it is more convenient here to use simply the-norm between the

M =2 (bit-stri_ngs of lengttm) to denote the output SyStem'distributions, ignoring th(% factor in the usual dePnition of the total variation
andD =27 (d bits) to denote the seed system that labels thigtance.



randomly chosen functions has been the subject of a large badythe quality of the output randomness has to be at least
of research. Starting with the work of Nisan and Ta-Shma [22],! !( m!).* As put forward by Ta-Shma [32, Slide 84], this
and followed by TrevisanOs breakthrough result [34], there ltlaen raises the question if the separation found by Gavinsky
been a lot of progress in achieving polylogarithmic seed size,al. iggmaximal, that is: is eyeryk, !)-extractor a quantum-
and there are now many intricate constructions that come clgseof O(k + log(1/!)),0O(m T) -extractor or does there
to the parameters in (3) (see the review articles [29], [35]).exists an extractor that is not quantum-proof with a large
Quantum-proof randomness extractorsN For applications separation, say,! (2”1)2(1)? We note that such a stability
in classical and quantum cryptography (see, e.g., [19], [27Bsult would make every extractor with reasonable param-
and for constructing device independent randomness amplébers (approximately) quantum-proof. However, for reasons
cation and expansion schemes (see, e.g., [9], [11], [21]) itdéscussed later it is unclear if such a generic quantum-proof
important to bnd out if extractor constructions also work wheneduction is possible and small sets of randomly chosen
the input source is correlated to another (possibly quantufanctions are interesting candidates to study this possibly large
systemQ. That is, we would Iiﬁe that for all classical-quantuntlassical/quantum separation.

input density matrice$gny = o "(X) (] x)x| acting on Our results about extractorsN (technical details can be
QN with conditional min-entropy found in [6]):
Humin(N1Q), := " 109 Psuess(N Q) # K, (5) » We write the extractor condition (2) as a quadratic op-

timization program. The optimal value for this program
wherepguess(N |Q) denotes the maximal probability of guess-  denoted asC(Ext,k) is the smallest errot such that
ing the systemN given Q, the output is uniform and inde-  Ext is a(k, !)-extractor. We then construct a semidePnite
pendent ofQ, programming (SDP) relaxation for this program whose

optimal value is denotedSDP(Ext, k). This program
! ! !

1 W ., C gives an efpciently computable procedure to certify that
D o () M ) o ®) a family of functionsExt is a (k,!)-extractor for! =
i () NS SDP(Ext, k).

« We show that this certipcation procedure giveg us much
more: it certibes thaExt is a quantum-proof (k, 2!)-
extractor. Thus, we give a general efbcient method for
proving that an extractor is quantum-proof. This tech-
nigue can recover in a unibed way many of the currently
known methods for constructing quantum-proof extrac-
tors. In particular, we can show that constructions based
on two-universal hashing [28], [33] are quantum-proof,
and that any extractor with entropy debcit" k or
output sizem small is quantum-proof [5] (fom = 1

+ this was known before [18]). This latter result is a basic

« Spectral (k,!)-extractors are quantum-prodk,2 T)- building block for showing that Trevisan based extractors

extractors [8, Theorem 4]. This includes in particular  are quantum-proof [13], and the extension from= 1

two-universal hashing [27], [33], two-wise independent  to general smalm could lead to more efbcient imple-

permutations [31], as well as sample and hash based mentations of short seed quantum-proof extractors [20].

constructions [17]. « We consider the limitations of this SDP relaxation. Even

As observed in [18, Proposition 1], if we restrict the syst@m

to be classical with respect to sgie bd$®} . ghen every
(k,!)-extractor as in (2) is also & +log(1/!),2! -extractor

in the sense of (6). That is, even when the input source is
correlated to a classical systém every extractor construction
still works (nearly) equally well for extracting randomness.
However, if Q is quantum no such generic reduction is
known and extractor constructions that also work for quantum
Q are called quantum-prodf.Examples of (approximately)
guantum-proof extractors include:

. One-bit oytput(k, !)-extractors are quantum-progk + though SDP(Ext, k) is a tight bound orC(Ext, k) for
log(1/!),3 T)-extractors [18, Theorem 1]. many extractor constructions, there can be a large gap

« (k,!)-extractorg, constructed ,algng Trevisan [34] are petween these two values. In particulafEit ang is given
quantum-proof k +log(1/!),3 T -extractors [13, The- by a small number of randomly chosen functions, then
orem 4.6] (see also [1]). C(Extrana k) - SDP(ExXt ang k). This shows that the

We emphasize that all these stability results are specibcally method we propose cannot be used to prove that a small

tailored proofs that make use of the structure of the particular set of randomly chosen functions debPne good extractors.

extractor constructions. In contrast to these bndings it was This means that other techniques would be needed to

shown by Gavinskyer al. [14, Theorem 1] that there exists determine whetheExt ,nq IS @ quantum-proof extractor

a valid (though contrived) extractor for which the decrease or not. To go in this direction, we propose a hierarchy
of SDPs that gives increasingly tight characterizations of

20ther notions for weaker quantum adversaries have also been discussed the quantum—proof extractor condition (6) at the cost of
in the literature, e.g., in the bounded storage model (see [13, Section 1] for
a detailed overview).

3Note that the dimension @@ is unbounded and that it is a priori unclear “Since the quality of the output randomness of Gavinakyl.Os construc-
if there exist any extractor constructions that are quantum-proof (even withn is bad to start with, the decreasd" !( m") for quantumQ already
arbitrarily worse parameters). makes the extractor fail completely in this case.



$:Ax/A x! C.We bnd thatthe non-commutative version
Quadratic programs and their non-commutative versionsN of the optimization problem (7)-(8) can be written as (cf. [25])
(technical details will be publicly available soon [7]). Our

increasing dimension.

methods are not restricted to study randomness extractors WC[A, G = max " AS (X, X)) " 12)

also allow to analyze general quadratic optimization programs T "

vyith Iine.ar'cpnstraints. That is, fok;; a rea!—vglued symmet— subjectto $:Ax/A x! C, (13)

ric maitrix, i &{1,...N}, we want to optimize expressions $ self-polar and normalized (14)

of the form i A;;X;X; such that the variables; & R satisfy o P _

linear constraintgy, & R[x1,...,Xy]: $ is linear constrained by, & G (15)
" " 0C: C1# X,;#" C1, (16)
"l "

p[A, G := max " AjiXiX; " (7) where self-polar is debned in [7], and we have to assume for
" " technical reasons the existence of some constant O as
subjectto G:= {g, g, ...} . ®) in (16). Starting from (12)-(16) and inspired by Navascees

al. [25] we then develop a converging semidepbnite program-

As discussed above the extractor condition (2) is exactly Bfing hierarchy

this form, but more generally quadratic optimi;ation .problems pVCIA, G = SDP [A]" ... SDP,[A].
appear fre_quently in gre_lph theory where we ml_ght thmlggf (17)

as the adjacency matrix of a graph and indegslabeling _ o
vertices® Another class of problems of the form (7)-(8) ard-Or randomness extractors we take the quadratic optimization
the classical value of two-prover games (also known as a BBIf» G = C(Ext ,k) and Pnd that tge corrgspondmg non-
inequalities). As an interesting special case we would like §fMmutative quadratic optimizatige®“[A, G =: Q(Ext, k)
mention classical channel coding with Pxed message lengfactly quantibes quantum-proof extractors as depned in (6).
Here we want to sené possible classical messages over Moreover, the Prst level of the hierarchy recovers the semidef-

classical channep(y|x) and maximize the average succes§it€ programming (SDP) relaxation as mentioned above:
probability: SDP;[A] = SDP(Ext , k). We emphasize that these results do

not follow from [25] since the debnition of self-polar forms
; : as used in (14) gives a potentially tighter hierarchy as the
&0, x)p(ybxd(y. 1) ©) one studied by Navascues al. (and this was important for
! ) the properties we showed about quantum-proof extractors).
ei,x) =1 (10) ' For two-prover games (Bell inequalities) with classical value
p[A, G] the non-commutative optimizatig?' “[A, G] becomes
d(y,i)=1, (11) the corresponding quantum value. In particular, for the channel
i coding example as in (9)-(11) we bnd that“[A, G =
eps’iccess the entanglement-assisted success probability. Interest-
ingly, there exist channels With ..css> P succesd12]- It would

SDP,[A]"

Psuccesss= Max
%1
I xT

%,

subject to e(i,x) # 0

d(y,i) # 0

wheree(i,x) andd(y,i) correspond to the encoder and d
coder, respectively. In this case, we have the malrx,; =

Ply[x)#i Ik
Now our general aim is to take the quadratic optimiza-
tion program (7)-(8) and to quantize it by allowing for [1]

non-commuting variables. That is, the variabks, ..., X 5

are allowed to be arbitrary free variables, with no com{2l
mutation relation to be assumed. We dePAéN) x
A{ Xq,...,Xy} to be the free complex algebra generateds]
by the set{ X,..., Xy}, and its elements are expressed as
complex linear combination of products of arbitrary length.,,
The algebraA x caries a natural involution : Ax I A x,
obtained by reversing the order and complex conjugation of thel
linear coefbcients. Furthermore, we introduce a partial order
on the free algebra by saying that & Ax # O if there [g]
exists an elemerB & A x with A = B*B. Now, in order to
arrive at a meaningful expression to optimize, the product df!
two positive numbers is replaced by a general bilinear form
mapping elements of the free algebras to the complex numbef$),

SExamples of this form include densest subgraph problems, vertex ex9]
panders, randomness condensers, etc. [7].

be interesting to explore this gap more systematically [16].
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I.  PRELIMINARIES
A. Quantum information

In quantum theory, a system is described by an inner-product space, that we denote here by letters lika/, M, Q.2
Note that we use the same symbol) to label the system, the corresponding inner-product space and also the dimension
of the space. LetMatq(S) be the vector space of@ x ) matrices with entries in .S. Whenever S is not specibed,
it is assumed to be the set of complex number<, i.e., we write Matg(C) =: Matg. The state of a system is
debned by a positive semidePnite operatopg with trace 1 acting on . The set of states on system) is denoted
by S(Q) C Matg(C). The inner-product space of a composite systenf)V is given by the tensor product of the
inner-product spacesQ @ N = QN. From a joint state pon € S(QN), we can obtain marginals on the systemQ by
performing a partial trace of the N systempg := Try [pon)]. The state pon of a system@ N is called quantum-classical
(with respect to some basis) if it can be written aspon = " p(z) ® |z)x| for some basis{|z)} of N and some positive
semidebnite operatorsp(z) acting on @ with | Tr[p(x)] = 1. We denote the maximally mixed state on system N by
UN -

To measure the distance between two states, we use the trace norfit||; := Tr[V/A' A], where A' is the conjugate
transpose of A. In the special case wherA is diagonal, ||4||; becomes the familiar¢; norm of the diagonal entries.
Moreover, the Hilbert-Schmidt norm is debned as|| 4|, :=  Tr[ A' A], and when A is diagonal this becomes the usual
¢, norm. Another important norm we use is the operator norm, or the largest singular value ofA, denoted by || A~ .
When A is diagonal, this corresponds to the familiar/~ norm of the diagonal entries. For a probability distribution
Py onthe setN, ||Py||;, corresponds to the optimal probability with which Py can be guessed successfully. We write

Hpin (N)p := —log|[Py [, 1)

the min-entropy of Py . More generally, the conditional min-entropy of N given @ is used to quantify the uncertainty
in the system N given the system(). The conditional min-entropy is debned as

o # #
Hpmin (N|Q)- := —log min_ #(1y ®Ugl/2)pNQ(]lN ®gg“2)#u 7 )
#q#S (Q)
with generalized inverses. Note that in the special case where the syste@ s trivial, we have Hpi, (N)- = —log|pn |- -

B. Semidepbnite programming

Semidebnite programs (SDP) are a large class of optimization problems that can be e!ciently solved. Even if one is
not explicitly interested in solving it numerically, a semidePnite program often has appealing properties such as strong
duality. Semidebnite programming has been extensively used in various contexts in quantum information.

We use a formulation of semidepPnite programs sometimes called vector programs. For some bxed valags -, Bx.x " k
and -, the optimization program can be written as follows:

1 In the following all spaces are assumed to be Pnite-dimensional.



maximize P yx8x 8y 3)
P
subject to  Hooulx By ! S forall k (4)

XX/
Here the optimization is over all vectoray (of arbitrary Pnite dimension) that satisfy the constraints stated above.

Note that we can always assume that the dimension of the vector8 is bounded by the number of vectors, i.e., the
size of the setx runs over.

II. QUADRATIC PROGRAMS FOR RANDOMNESS EXTRACTORS

It is useful to see the dePnition of extractors using the following optimization program:

Error for extractor Ext = {f}

" #

Lo
C(Ext, k) := maximize % %, (x)=y " Mi P(X)#sy 5)

sy X
subject to 0! p(x)! 2"k (6)
P =1 @)

X

"L #y ! 1 ®)

Debnition 11.1.  Ext is a (k, &-extractor if and only if C(Ext,Kk) !

To r%ateo,gﬂls to the depnition given in the introduction, it su'cesﬁo ob@rv%that the opt@al choice for #s, is the
1
signof . %, x)=y" § P(X)so the objective function becomesIj sy x M=y’ M— p(x)". The conditions (6)
and (7) ensure that the input distribution has min-entropy at least k.
To simplify the program (5) we note that this function is convex in the distribution p and so the maximum is
attained in the extreme points of the feasible region. These are simply the distributions that are uniform over a set of

size at least . So we can equivalently write

(

Lo ! :
C(Ext, k) = max : 1 L Z

‘L# N,L$ 2 | (9)
sy x" L

where again in a slight abuse of notation, we use the lettet. for the actual set as well as its size. As the expression
being maximized is the'; norm between two probability distributions, we can write it as:

*

+ !

1 R )
Ext,k)=2 & — %.x=v ' —— :L# N,L X R# M %D . 1
C(Ext, k) amax XD oo b=y wD L $ 2°, oD, (10)

This allows us to interpret C(Ext, k) in graph-theoretic terms. For that we introduce a bipartite graph with left vertex

set N and right vertex set M %D, and there is an edge between vertices and (y, s) if and only if fs(x) = y. By

writing E(L, R) for the set of edges with one endpoint inL and the other endpoint in R, this expression is simply
0 1

E(LLR), R ) .
w5 g b#NLS2R#EM®%D (11)

C(Ext,k) = 2 amax

Written in this way, we see that the optimization in C( Ext, k) is a kind of bipartite densest subgraph problem.
Algorithms for a slightly di"erent problem known as the densest K -subgraph problem have been extensively studied,
see e.g.,§, 12]. The best known approximation algorithms for this problem achieve a factor ofN' for some constant
I', but even ruling out constant factor approximations is only known using quite strong assumptions [1].

We can similarly write a program for the error of Ext against potentially quantum adversaries:



Error for extractor Ext = {fs} against quantum adversaries

Q(Ext, k) := maximize — ZZ ( @)=y — ) Tr[ p(z) Bs ] (12)
subjectto 0< p(x') <27ks (13)
Zﬁmm (14)

Tr[a] = (15)

IIBs,ylloo <1 (16)

Here the maximization is understood over allp(x) of arbitrary dimension. Unlike for SDPs for which one can give an
upper bound on the dimension of the vector of an optimal solution, no such bound is know in this setting. In fact, we
do not even know if the quantity Q is computable.

Debnition 11.2.  Ext is a quantum-proof (k, )-extractor if and only if Q(Ext,k) < e.

To see that this depbnition coincides with the dePnition given in the introduction, observe that for bxedp(x), the
maximum over B, ,, of the quantity > (67, )=y — 77) Tr[p(2) Bsylis || 3, (6. (x)=y — 37) p(2)]l1. The constraints
on p(x) and o ensure that the state ) p(x) ® |z)(z| has conditional min-entropy at least .

I1l.  SEMIDEFINITE RELAXATIONS FOR RANDOMNESS EXTRACTORS
A. A relaxation for the extractor condition

Motivated by the fact that the two quantities C( Ext, k) and Q(Ext, k) are generally di'cult to understand, we
introduce a SDP that, as we show later, provides a relaxation for both of these quantities. FOExt = {fs}scp and
bxed k, we debne:

SDP relaxation for error of Ext= {f,}

SDP(Ext, k) := maximize % > (5]%(@_@, - ]\14) Gy - by (7)
S,Y,T

subjectto 0< @, - @, < 2% q(z) (18)

g(z) <27F (19)

> alz)=1 (20)

D i <1 (21)

[bs,yll2 <1 (22)

We maximize over all possible dimensions of the vectorg,. and b,. Moreover, the Cauchy-Schwarz inequality implies
that the optimal choice for b, , is

2w (O )=y — 31) Ta
13, (0f.(a)=y — 77) Gallo

and thus the objective function of the SDP relaxation becomes

; (24)

2

subject to the constraints on the vectorsd,. stated in (17). By simply plugging d, = p(x), ¢(z) = p(x) and 5371, = Boy
we see that this SDP gives an upper bound on the extractor program (5).
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Proposition III.1. For any Ext and k, C(Ext, k) ! SDP(Ext, k). In other words, if SDP(EXt, k) ! ¢, then Ext is a
(k, €)-extractor.

This gives a computationally e!cient criterion for certifying that an extractor is good. As we show in Section Il C,
this method can certify that many important constructions are good extractors. However, this technique does in
general not give a tight characterization of extractors and there can be a large gap between the values EXt, k) and
SDP(Ext, k) as we will see in Section Il D.

B. A relaxation for the error against quantum adversaries

A very interesting property about the SDP (17) is that it also gives an upper bound on the error of an extractor
against quantum adversaries. This means that if an extractor satisPes the stronger propertDP(Ext, k) ! e then it
is not only a (k, e)-extractor but also a quantum proof (k, 2c)-extractor.

Theorem II1.2. For any Ext and k, we have

C(Ext,k)! Q(Ext,k)! 2&SDP(Ext,k) . (25)

Proof. Let p= 3" p(x)#| 2®%| be a quantum state onQN with H.,,;,(N|Q): & k. By the debnition of the conditional
min-entropy, this implies that there exists o 'S (Q) such that p(x) ! 2 kg forall z' N. We now debne the average
state p= 3, p(z) and w = -, as well as the vectorsd, as the list of entries of the matrix %w! U p(z)wt 14,

This is so that we havedy ady' = $Tr[w' 2p(z)w' Y 2p(a#)]. As the trace of the product of two positive semidePnite
operators is nonnegative, we haveiy ady: & 0. Moreover, we have

dy &dy = %Tr[w! V2 h(z)w' V2p(a] ! %Tr[w! V2 h(z)wt V22 ko) (26)
! %azl KTl w' Y2 p(z)w' Y 220] 1 28 KTr] p(2)] . (27)

We set g(z) = Tr[ p(z)]. Note that we have g(z) = Tr[ p(x)] ! 2' XTr[o]=2"'*and 3, ¢(x)! 1. We can also write

1 1 ] 1 ] |
> iy iy = ST V2 gt 126 STiw! U2g,t V2211 1. (28)
X,X !

We now analyze the objective function. We use the following Helder-type inequality for operator( a8y(; !
Qa0 812 21 v1*(V4, see e.g., [7, Corollary IV.2.6]. The error the extractor makes on input is given by

iy Z(&S(x)_y) AZ) (1)
sy X

1
9 1/ 2

! % Z(w(}/4 (Z (5fs(><)—y ) ]\Z—> (.d! 1/4[)(33)00! 1/4> (w(1/4 (29)
sy " 1

- - 1 1 1 1/2 11/2

=D Z Tr Z <5fs(x)y ) M) <5fs(xl)y ) M) W 1V 2p(z)! 12 p(a) (30)
Sy xx !

1 1 1 z — Z—
D Z Z (6fs(x)—y) M) (5fs(x!)—y ) M) 2 ady ady (31)
Sy

XX !

1),
Z (5fs(><)—y) M) ax

X

2
o
sy

This proves that the error the extractor makes in the presence of quantum adversaries is upper bounded by2 a
SDP(Ext, k). O

(32)

2



C. Applications

We now give several applications of theSDP relaxation. We show that many results about quantum-proof extractors
can be shown with the SDP quantity. First, let us consider general results that do not use the structure of the functions
in Ext but simply the extractorOs parameters. We know the advantage obtained by a quantum adversary compared to
a classical one can by bounded by a function of the number of output bitsn or the min-entropy debcit n! k [3] (for
m = 1 this was brst shown in [15]). In particular, if m or n! k are small, then the quantum advantage cannot be
large. We show that this is actually a property of the SDP.

Theorem IIL.3. For any Ext and k, we have for any! > 0,

! #_#__
SDP Ext,k +log(1/!) " 2™ C(Ext,k)+ ! (33)
SDP(Ext,k) " 3K 2™ FC(Ext, k! 1), (34)

whereK ¢ " 1.8 is GrothendieckOs constant.

Proof. As Ext is usually clear from the context, we use Ck) and SDP(k) for C(Ext, k) and SDP(§xt, k). To prove
(33), we consider an optimal solution forSDP(k + log@/! )). DePne p@,x") =4, &, , with p(x)= ~ _, p(x,x"). Now
consider the setS. = {x $ N : p(x) " !q(x)}. Then = .o B(X)" ! . d(X)" !. Using the fact that &, debne
a feasible solution forSDP(k + log(1/! )), we have forx $ S, p(x,x") " 2' (ko9 /&) g(x) " 2' F@(x). We can then
write using the Cauchy Schwarz inequality,

D Hr(=y! 2™ 8, ) Hro=y! 2™ a, 2m (35)
T 2

S5,y z 2 5Y

TR ! " .
We now look at the expression & Hin=y! 227 &, 2 which equals

S,y xT

1 % % | 1 ) r! ! ) "
D Fra=y! 27 afg@y=y! 27 P X) (36)

!
$,Y x,T * %

1 % % :% | \ n ’! \ " ., :
"D o eyl 27 A=y 27 pOGX)Y (37)
sy oz o, %
1% % % 1 oo o
~ * #fs(x!): yl 2m p(X,X )I . (38)

We separate the sum intox $ S, and x $ S, and get

* *
1% % % 1 oo e
D o PRyt 27 POGx)Y (39)
s,y T z! % %
1 % % :% | | " p(x X)I
= = X) * # e, 22m ! * 40
D oy p( )* | fs(z')=y mx) * ( )
’ *T *
% 1% 3% 1 " Vi
= p(X)B x He (at)= y ! 2lm p(;.XX) ): (42)
x# S ERY] @(‘ %
% 1 % :% | " p(x X)I
+ BOT  F )=y 2m W;" I +C(k) , (42)
z# S s,y o

which proves (33).
We now prove the inequality (34). For that, we simply upper bound SDP(Ext, k) by forgetting several constraints
and then apply GrothendieckOs inequality (Theorem A.1). Observe brst that for any feasible vecto#s, for the SDP,



we haveld,!2" 2 kqx)" 2' 2,

1 1 7| 1
SDP(Ext, k) " max{D Z ("fs(x)zy# 2 m)ax ah’y A, 2 k,!bs’y!z " l} (43)
S,¥., X
' 1 n ! . n ! "
Kg max{Dg; ( fux)=y # 2 m)axbsly dlak] "t 2 k,le,YI 1} (44)
1 " ! . n !
= KGmax{DSZy: Zx:( Coomy # 2 M) ay a2 k} _ (45)

We partition the set of x $ N into {x : axy %0} and {x : ax < 0} and write

D (Cro=y #2 M a " | Y (rw=y#2 ") a (46)
X X:az" 0
+ Z ("fs(X)= y # 2! m) (# ax) (47)
X:a;<0

Let us write #, = Y., . gax. If #. %1, then we debnep, (x) = ™*{2=%  Opserving that #. " 2" ¥, we have
> (roo=y#2™)a

1 1
i = #, 4=
D Z x:az" 0 ' D Szy:

S,y
" #.C(k +log(#.)) " 2" kC(k) , (49)

where we have used the abbreviation ) = C( Ext, k). Otherwise (if #. < 1), we dePnep; (X) = max{ay, 0} + (1 #
#.)2' ", We get

D (teo=y #2 ™) pe () (48)

X

%Z Y (r=y#2 M) a (50)
S,y [x:az" 0
! t'm I'n
= SZ S (raeomy #2 ™) (P () # (L# #4)2' ") 51)
sy | x
' 1 " 'm 1 . 1 i
BZ Z(fs(x):y#z )p+(x) +(1##+)BZ Z(fs(x):y# M>2' (52)
sy | x il

" C(k# 1)+ (1 # #.)C(n) . (53)
With a similar argument for the set {x : a, < 0}, we reach the bound

%Z D o=y #2 ™) e (54)
3% X
" max{2a2" KC(k),C(k# 1) +C(n) (55)
+2M KC(K),2C(k# 1)+ (1 # #. # #, )C(n)}" 342" KC(k# 1) . (56)
Finally, we get SDP(k) " 3K g2" KC(k # 1). O

Some specibc constructions are also known to be quantum-proof, in particular constructions based on two-universal
hash functions ROER2]. This type of construction is captured by spectral extractors p]. For an extractor Ext = {fs}ssp
we debne the linear maps [Ext] andb that map vectors of dimensionN to vectors of dimensionDM as follows:

[Ext] (Z p(x>|x&'x|N> = LAY S0 yPX)IY &Yl (I S&Slo (57)
X Sy X

$<Zp(x>|x&'xm> = (Zp(x)) Vi (Vo (58)



Note that we used a quantum notation and identiPed vectors with diagonal matrices. A spectral K, ! )-extractor is
then debned via the largest eigenvalue bound

"1([Ext]’ A[Ext] ! # a#) wogk mdy (59)

where # refers to the adjoint of a linear map. We prove next that for spectral extractor, there can be at most a
quadratic gap between C(Ext, k) and SDP(Ext, k).

Theorem 111.4.  Let Extspec = {fs}s#p be a spectral(k,!)-extractor as debned in(59). Then, we have
$_
SDP(Extspec, k) " T (60)

The proof can be found in Appendix B. Another class of extractors that are quantum-proof are Trevisan based
constructions [2, 10]. These are particularly important to understand because they are the only known quantum-proof
constructions with short seedd = O(poly(logn)). TrevisanOs construction can be thought of as a composition of one-bit
output extractors cleverly interleaved by slightly reusing the seed. Specibcally, the construction is based on a family of
subsetsSs, ..., Sy % {1,...,d} such that for eachi we have

ISi|=1 and Y 2SSl r(m1 1), (61)

j<i
for somer > 0. Such a family{S;}i# 1,..m} is also called weak [ r)-design. Now, take a one-bit output extractor

EXtone = {Ot}t# 0,130 With g : N &{ 0,1}, and a weak (, r)-design as dePned irf{61). Trevisan then debnes am-bit
output extractor

Extrrev = {fstsep with fg:N & M (62)

fs(X) = Ggis,(X) " Gsis,(X) "@aa’gys, (X) , (63)

where s|S; denotes thel-bits of s that correspond to the position indexed by the setS;, and ' means concatenatior?

The basic idea of the proof is to bound the quality ofExtye, as a function of the quality of Extone. Then (using
Theorem I11.3) one can relate the quality of Extyne against quantum adversaries to its quality against classical

adversaries. We give (in the Appendix) a concise proof of this result using our notation in terms of the quantum
program (12).

Theorem 111.5.  Let {Si}i4 1,..m) be a weak(l,r)-design as debned in61), and Extone = {Gt}1#( 0,131 b€ a one-bit

output extractor. Then, we have for TrevisanOs extractoExt ey = {fs}s#p as debned in(62)E63),

Q(Extrev ,K) " m&Q(Extone, k! r(m! 1)) (64)
" 2m &\/C(Extone, k! r(m! 1)! log(1/!))+ !, (65)

forany !> 0.

D. Gap between C and SDP

In this section, we show that there can be a large gap between the value C an8DP. In fact, we show that SDP
cannot be used to prove that randomly chosen functions are good randomness extractors. Random functions are good
extractors with essentially optimal parameters. In other words, for a family of functions Ext,ang = {fs}s#p chosen at
random, we have with very high probability that

C(Extrang,K) " ! for m=k! 2log(2!)! O(1) (66)
d=log(n! k)+2log(1/')+ O(Q) . (67)

In contrast to this, we bnd that the SDP relaxation for random constructions can become very large for sulciently
small min-entropy k.

2 Actual parameters for Trevisan based extractor constructions are, e.g, discussed in detail in [10, Section 5.



Theorem 111.6.  Let Ext = {fs}s p be a family of functions such that

DN2Z2 D DN 2
Yl | fa00=fs0) b ta=g—

| Iy
XX ',

-1

(68)

#
andk! log !;4+ . Then, we have

-2

When the functions fg are chosen at random, then the condition (68) is satisfied with very high probability
for constant values of !'; and !, (see Proposition B.1 for a proof). Hence, we find that for instance if kK = n/ 2,
m = n/ 4 and d = O(logn), with high probability SDP (Extrang ,K) # 2, whereas we have with very high probability
C(Extrand k) ! %. As clearly Q(Ext, k) ! 2, this also shows that Q can be much smaller than SDP.

Moreover we can show that for Trevisan’s extractor, we cannot replace Q(Extyey ) with SDP(Extrey , K) in general
in Theorem II1.5. This is because if the one-bit extractors {g} in Trevisan’s construction are chosen at random, then
it is possible to show that the condition (68) is satisfied with high probability for constant values of 1 and !, (see
Proposition B.1 for a proof).

vz s % % " .

Proof of Theorem III.6. L}ose B =% a gy fox)=yISSY® $ = sy fe(x)=y fs(x)=y- By definition the
normalization condition . # &y | 1 1is satisfied. Moreover, for any fixed X, x¥ we have

. 1! D, 1M

By ady = 3 “fe(x)=y fe(x)=y ! 3 ! T NZ ! HWQ(X) , (70)

1
sy 1

#
where we used the lower bound on !; and we choose q(X) = 1/N . Now if k! log ! 1,\'\/1— , the min-entropy condition
for the vectors is satisfied. Now let us analyze the objective function by choosing ﬁ,y = |s$y$ We find

D )=y %ﬁ hy f%s,y - D o=y Yo $ 1/2"fs X)=y (71)
Sy X Sy X
&y NS 1$ M
S,X
which proves the claim. O

IV. HIERARCHY OF SDPS FOR Q

Given the SDP relaxation for extractors against quantum adversaries (Theorem III1.2), it is natural to ask whether
we can add positive definite conditions such that the upper bound improves or even becomes equal to the it. Note that
a similar question has been studied in the case of two-player games, also called bipartite Bell inequalities in the physics
literature (see the review article [8]). Here, the task to bound the entangled value of the game. Again, this value can
be upper bounded in terms of an SDP, and the goal is to add more and more constraints to ensure a better and better
upper bound (see [11, 17] for two complementary approaches in this direction). It turns out that similar thing can be
done for extractors and that even a unified discussion is possible. We refer to the full version in preparation [4] for
further details and only say a few words and state the levels of the SDP hierarchy (in order motivate further studies in
this direction).

Our approach is motivated from the construction of Lasserre’s Sum-of-Squares hierarchies for constrained optimization
problems [16]. Given the extractor program (5), which is itself of such a form, this is not surprising. Assuming that
the constraints single out a closed convex set, the underlying idea is to construct a positive measure supported on
this set while simultaneously maximizing the expectation value of the objective function with respect to this measure.
Since the objective value is thus linear in the measure, the optimum is attained at a point measure defining the
optimal solution. In order to construct such measures, we have to define its moments, i.e., expectation values of
monomials. It is convenient to arrange them into matrix form, and this matrix (indexed by monomials) then has to
be positive semidefinite. Thus the task is reduced to constructing positive semidefinite matrices, further satisfying
constraints imposed by the structure of the convex set - which again can be phrased as positive semidefinite constraints.



A bxed leveln is then debned by only considering the constraints originating from monomials of power at most.
The idea for the quantum-proof extractor program (12) that we want to upper bound is quite similar, but rather
than considering commuting variables, the OmeasureO now has to debne a functional on non-commuting operators
- or more precisely a state on an operator algebra. The general idea is very alike the non-commutative polynomial
optimization techniques by Navascues 9], however for extractors a few more constraints have to be added (again, we
refer to the full version for details). In comparison to the classical case, though, these matrices are now indexed by
non-commuting monomials, or equivalently, by elements of the free algebra spanned by the variables in the objective
function. Expressing a feasible matrix of thent" -level of the hierarchy as a Gram matrix then leads to vectorsc,
indexed by Owords®v = (iq,i»,...,in) - strings of indices corresponding to variables given by the inputx and output

¥ = (s,y) of length at most n. We denote the set of such words by5,,. To simplify notation, it is useful to introduce

for a bxed pair of indices {,j ) the matrices

CI(1),()] = Eringiyrs @gregyr [rI"s|# KM, (73)
rs,k,l ! Sy

where (,j ) label the variables, i.e., () and (j) are words of length one. Here, we abbreviated the operations
corresponding to reversing the order of wordsr* := (ry,...,rp)* = (rp,...,r1) as well as to concatenationr $s :=
(re,...,rp,s1,...,Sqg). We also allow the indices to take the value% which we interpret as Ono variableO and thus
debner $ %= r. For n even, the program then reads as follows:

n'" -level SDP relaxation for error of Ext = {fs}

" #
- 1! 1 .
SDP; (Ext, k) := maximize = "=y & 35 oo #ey) (74)
S,y X

subjectto ' (i),(j) ( S1, 'x
0) CI(x),()) 2°CU%, ()]
0) CI(i).()]) 2$kC[(i).((,’/iﬂ
CI%. (x)]) Cl%. (W and  C[(x),(H]) CI(%, (%]

CI(x), (<) CU(%A, (A

XX "

all vectors have norm bounded by one

The dependence om clearly enters through the dimension of the matricesC](i), (j )], which are indexed by words of
length up to n. Note that in particular for the level n =0 the matrices C[(i), (j)] in (73) become scalars again and we
get back the SPD relaxation (17) - including an additional dummy vector indexed by the empty word.

However generally the programs are debned for bigger and bigger sets of matrices and therefore vectors, providing
more and more constraints and thus reducing the optimal value of the program. Finally, we note that similarly as
for two-player games, the hierarchies of the SDP do not converge to extractors against Pnite-dimensional quantum
adversaries but instead they converge to extractors against inpnite-dimensional quantum adversaries. Whether these
two cases can be dilerent is a wide open question connected to a major open problem in operator algebra theory:
ConnesO embedding problem [9, 13, 14, 18].
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Appendix A: Useful Lemmas

Theorem A.1  (GrothendieckOs inequality) For any real matriz {A;;}, we have
! %
" g &
max AAE 1, bl 1 (A1)
! %
" g &
" Kg émax# Ajjab e, b # R, a1, " 1, . (A2)
0,j
Theorer‘rl A. 2 (Cherno! bound) . Let X; #{0,1} be independent and identically distributed random variables, and
p:=E{ .X;}. Then, we have
) R
n n e(s n
P . Xl $ (1+ )l.l m fOT’ any > 0 (A3)
) <,
e

$
p X" 1%")p " W forany0<"< 1. (Ad)

Appendix B: Missing Proofs

Proof of Theorem II1.4. We start with the expression 1 L ( sy ( - _"fs(x):y % ﬁaw! o for the SDP, where the vectors
a ., fulbll the conditions stated in (17). Using Cauchy Schwarz, we may bound
- 0 A [ 52 1/2
1 $ ;$ n 1 , ; " 1 $ %$ n 1 ' ; M
Bsyf ) fo @)=y 3 awt 15”; ) fs @)=y Y3 ax;f 2m/? (B1)

We now take a closer look at the expression in the brackets. Expanding the norm squared gives rise to the expression

4 5 4 5
18 8 * 1’ s T 1’
= % A & s % Ay (82)
S,y z !
4 5 4 5
19 $ } % i}
) f@=Rz 2 fe(@)=Pa
8,y T z!
1% 1% .
Ny v s@=Reds
ERY z,x!
1% 1%
K VIR O R
ERY z,x!
11% %
+ = A, &, (B3)
Y x,Tr
Let us examine the cross terms
1$ 18 1% 18
— — N )l @ = — — A, &, , B4
D M | fs(-lc)—la D M | ( )
8,y z,z' s z,x!

since for each bxed pais,x # D & N there is exactly oney # M such that f ;,(x) = y. The second cross term evaluates
analogously to the same value, which is also equal to the fourth term in the expansion of the norm, and hence we are
left with
4 5 4 5 4 5 4 5
1% 8 3 1$ 1 8 1 $
B "fs (I):’lﬂ x a "fs (a:! ):ﬁ x! % B M él x am él x! . (BS)

8,y x ! ERY T z!
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Introducing the maps ! ¢ and " from #%(N) to (M),
| |
ls: 8 — %,x)=y® and " 8 — M 8 (B6)
y y

this may be written as

!
S @@ @), (®7)

where the dot now means taking the scalar product in the Hilbert spaceh(M ) ® H and we setd= |, & @8 € HQH.
However, this is up to a factor of% exactly the debning expression of a spectral extractor. Hence we may bound

1! &
o @@ @@ <28 (B8)
S
The last norm evaluates to
! !
[B2= & & <2F gx)=27K, (B9)
X X
and comparison with (B1) gives the desired bound. O

Proof of Theorem I11.5. Consider a feasible solution 0f(12) given by ' (x), (,B sy all acting on a Hilbert spaceQ. The
objective function can be written as

1! # $
od %S(X): y = 2" Tr[" (x) Bs.y]

2d
S,¥.X
0 '
1! ! /0".1_1 1 S 1 &
= ? om—t—1 %s(x)k=Yk - om —t %s(X)kak Tr[' (X) Bs,y] (Blo)
sx ye{0,1} t=0 k=1 k=1
m-1 ! & ( N
= od %s(x)k:yk %S(X)[+1 =VYe+1 E Tr[I (X) Cs,yl,yz ..... Y ot+1 ] ’ (Bll)
t=0 S,X Y1.Y2....Yt+1 k=1
where we debned
1 !
Coyiry oy = o1 Bsyiz ym - (B12)

Yt+2 4o Yy m €{0,1}

We now start using the particular structure of the extractor in (63). From now, we Px the value oft and the dependence
on t of many variables are omitted to lighten the notation. The seeds can be speciPed by = s|Si.; € {0,1}' and

b= s|SF,; € {0,1}9"" where S{,, is the complement onS;.; in the set {1,...,d}. We will thus interchangeably uses
and (a,b). Using this notation with the structure of fg, we obtain
1! # s
E 0/f]s(x): y — 2 m TI’[ (X) Bs,y]
S,¥Y.X
n1q | ( )
= od Reo @=y1y: K=y — 5 Tr[" (%) Cabyiyzry o ] (B13)
2 2
t=0 X Y1.¥2,Y t+1
ae{0,1}
be{0,1}¢~!
m-lq | ! (0 ) 1 ! |
= o B.(x)=2 — 5 a1 Tr[" (%) Caphys (a).2] (B14)
S PEECE be (0.

where hyp(a) represents the brstt bits of fs(x). Note that for a bPxed x and b, the outcome of this function only
depends on the bits ofs that belong to one of the setsSy, ..., S;. In particular, the Prst bit of hyp only depends on
the substring of a corresponding to indices inS; N Si+1 . Thus, for any x, b, the function hy belongs to the family 7
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of functions h : {0,1}' 1 { 0, 1}' for which the j-th bit h' of h is a function h! :{0,1}Si* S+ 1{ 0,1}. Thus, for any
x,bonly jt:l 2Sit Seal™ r(m# 1) bits are sulcient to fully describe the function hyy. As a result, |F| " 2/(M" 1),

Let us debPne new positive operators on a large® $ H $ G system as

1

B0 = oy 1(X) $ "h=n,, [N%68ly $ | (B15)
b#{ 0,13 ¢" '
h#F
t b#{ 0,1}¢" !
. h#F ¢
G, = Cabh(a).z $| %8 $ | 04 . (B17)
b,h#F ¢

I .
Note that & as well as , (x) have unit trace and ' @;,'s " 1. In addition,

b L(x) $| hooly $| e " |F (|2 kg 2/ r(m" Dy (B18)

2d" |
b#{ 0,13 9" '
h#F(

where we used the fact that! (x) " 2" X#. This shows that the newly debned operatorst(x), #, @a,z satisfy the
constraints of (12) for the extractor Extqne With min-entropy k# r(m# 1). Looking at the value of the objective
function for this solution, we obtain

1 n # 1$ 1 " # 1$
E "ga(x): z # é Tr[é(x)@a,z] = ? "ga(x): z # E Tr[b(x)@a,z] (Blg)
a,z,x a}l,z,x # 1$ . §
= 5 "ga(x): 7 # 5 W Tr[' (X)Ca,h(a),z] , (BZO)
a,z,X b

which is exactly the t-th term in the sum in (B14). To relate Q(EXtgne, kK # r(m# 1)) to C(Extone, K# r(m# 1) #
log(1/$)) + $, we use Theorem I11.2 and Theorem [I1.3. O

Proposition B.1. Suppose the functionds: N ! M from the family {fs}szp are chosen at random withf s(x) and
fs (X% uniformly distributed and independent whenevex € x” Then, we have forN ) 16 that

% )
&g # onn#DSE 1oNN#ED” L 1
P. "fs(x):fs(x") # DN + T ET-I- " TG . (le)

XX ",s

This of course includes the case when the functionss are chosen uniformly and independently, but also the case of
TrevisanOs construction where the one-bit extractor is a randomly chosen function.

Proof of Proposition B.1. We start by separating the casesx = x”and x € x%

"to)= fs(x) = DN + "f ()= s (x) - (B22)

XX ",s SX&X"

We compute the expectation over the choice of :

0,
2. )

n 1
E fa=fs0x), = DN(N# 1), (B23)

s,Xx&x"

simply using the fact then for x € x% f<(x) and fs(x% are independently chosen. We now would like to show that
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with high probability this random variable is close to its expectation. For that we compute the second moment

I!I % ( 2:
' +
1«93,, & fo@)=fo @) w (B24)
$ s,x#x! ’
= P{f,(x1)= s, (x1),fs,(X2) = T, (x5)} (B25)
sl,szwlséwz,w!l#‘w!z
= P{f, (x1)= fo,(x]),fs,(x2) = fo,(x5)} (B26)
sl,sz,wl#wz,w!liz!zl,{xl,wll}#{a:z,x!z}
+ P{f, (x1)= o, (x]),fs(x2) = fo(x5)} (B27)
51,582,801 #T2, @) #xh {x1,2) y={x2,2} }
1
2 n " n
' D N(l\'l I(N(N " 1) Z)W (B28)
+2 P{f51 (Xl) = f51 (Xll)} (Bzg)
51,82,T1F#T2
= D3N(N " 1)(N(N" 1)" 2)% +2D2N(N " 1)Mi } (B30)
As a result the variance| is at most .
b '
Var$ !fs (r):fs (m!) (831)
s,x#x! !
I D2N(N" 1)(N(N" 1)" 2)i+2D2N(N " 1)i" - DN (N " 1)i. : (B32)
' M 2 M M
I 2D2N(N " 1)Mi. (B33)

~ #_/
Using ChebyshevOs inequality gives with a standard deviatioh! 2D N(N " 1)/M we have

] *

#g ’ +
DN (N " 1) 1
P Dmf(a) " o 8S 4 B34
s  ‘tr@=re) M $4 !5 (B34)
s, rF£x!
Bl
But4" ! 4 2D N(N" )M ! LPNOYZD tor N § 16. O
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