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We use the entanglement sampling techniques developed in (Dupuis et al., 2015) to find a
lower bound on the entanglement needed by a coalition of cheater attacking the quantum
postition verification protocol using the four BB84 states (QPVBB84) in the scenario where the
cheaters have no access to a quantum channel but share a (possibly mixed) entangled state
Φ. For a protocol using n qubits, a necessary condition for cheating is that the max- relative
entropy of entanglement Emax(Φ) ≥ n −O(log n). This improves previously known best
lower bound by a factor∼ 4, and it is essentially tight, since it is vulnerable to a teleportation
based attack using n−O(1) ebits of entanglement.

Technical paper : arXiv:1504.07171

I. CONTEXT AND PREVIOUS WORK ON POSITION

VERIFICATION CRYPTOGRAPHY

The very first (classical) position verification (PV) pro-
tocols have been distance bounding protocols, intro-
duced in 1993 (Brands and Chaum, 1994) to prevent
man-in-the-middle attacks. However, these protocols
only work in some situations, and PV protocols by a
coalition of distant verifiers {Vi} are more useful, as
they allow to build localized authentication protocol,
but also many other cryptographic applications, like
key distribution at a specific place (Chandran et al.,
2009). However, (Chandran et al., 2009) have shown that
no classical PV protocol can be computationally secure
against a coalition {Mi} of malicious provers.

Quantum position verification (QPV) protocols ap-
peared the next year in the scientific literature, with pub-
lications of three independent teams (Buhrman et al.,
2014; Chandran et al., 2010; Kent et al., 2011, 2006;
Malaney, 2010a,b). Even in the quantum case, uncon-
ditional security is unatainable (Buhrman et al., 2014);
a universal attack using an exponential amount of en-
tanglement is known (Beigi and König, 2011). To guar-
antee the security of a QPV protocol one either needs a
computational hypothesis (Unruh, 2014) or a bound on
the quantum entanglement shared between the cheaters
(Beigi and König, 2011; Buhrman et al., 2014; Lau and
Lo, 2011; Tomamichel et al., 2013).

The present work is in the latter framework, where
the cheating coalition {Mi} only has access to a limited
amount of entanglement. Despite the exponential uni-
versal attack, the best lower bounds found so far have
been linear (Beigi and König, 2011; Tomamichel et al.,
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2013). To our knowledge, the protocol showing the best
security in this framework is an expermentally imprac-
tical protocol, QPVMUBs, proposed in (Beigi and König,
2011): a n-qubits implementation of QPVMUBs is secure
against adversary holding less that n/2 ebits.
QPVBB84, introduced in (Buhrman et al., 2014; Chan-

dran et al., 2010), is experimentally much simpler since it
essentially uses quantum key distribution components,
and (Tomamichel et al., 2013) have proved its security
against adversary holding less than − log2(cos2(π/8)) ·
n ' 0.22845 · n ebits of entanglement. We improve this
bound to n−O(log n) ebits. Since a teleportation-based
explicit attack using n−O(1) ebits is known (Kent et al.,
2011; Lau and Lo, 2011), this bound is tight.

Our argument is essentially that the winning condi-
tions in QPVBB84, for a cheating coalition {M1,M2}, are
essentially the same as the cheating condition of weak
string erasure (WSE) in a variant of the noisy storage
model (NSM), with supplementary conditions (M1 also
has to guess the string). QPVBB84 is therefore harder to
defeat than WSE in the NSM, and we can adapt the se-
curity proof of WSE given in (Dupuis et al., 2015) to our
case.

II. MIN-ENTROPY AND MAX- RELATIVE ENTROPY OF

ENTANGLEMENT

As usual in the security proof of such a quantum cryp-
tographic procedure, the security is ensured by a lower
bound on the conditonal min-entropy of entanglement
Hmin(X|B) where X is the classical bit-string to guess
and B the (quantum and classical) information acces-
sible to the cheater. This quantity is the logarithm of
the winning probability of the cheater, a linearly increas-
ing Hmin corresponding to an exponentially decreasing
cheating probability.

The relevant figure of merit of the bipartite quan-
tum state Φ shared by the cheaters is the max- relative
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entropy of entanglement Emax, introduced by (Datta,
2009). This entanglement monotone is closely related to
Hmin, and can be used to lower-bound it, since, for any
bipartite system AB,

Hmin(A|B)ρ ≥ −Emax(A; B)ρ

III. WEAK STRING ERASURE AND ENTANGLEMENT

SAMPLING

To cheat in a WSE in the NSM, Bob has to guess the n
bits of X, with two informations :

• a noisy quantum memory B, wher he had previ-
ously stored quantum (and classical) information
about of n-qubits encoding X in an unknown BB84
basis;

• The basis information Θ. He only learned Θ after
the imperfections of the memory have taken effect.

(Dupuis et al., 2015) use an entanglement sampling argu-
ment to bound Hmin(X|ΘB) by a monotonous function
γ of Hmin(A|ΘB), the min-entropy in the equivalent en-
tangled protocol, taken before Alice measures A to get
X.

If we replace the quantum channel modeling the
memory by a bipartite state, Φ, we are in a slightly dif-
ferent security model, the noisy entanglement model
(NEM), but we can still use the same reasoning. We
can also bound Hmin(A|ΘB) by −Emax(A; ΘB) and use
a monotony argument to bound the latter by−Emax(Φ).

This allows us to show a lower bound on the entangle-
ment needed to cheat for the WSE protocol with a proba-
bility at least ε.

Emax(Φ) ≤ n− s− nh
( s

n
)
≤ n− s log2 n + s log2

s
2e

where s := 1− 2 log2, e is the basis of the natural loga-
rithm, and h(α) := −α log2 α− (1− α) log2(1− α) is the
binary entropy function.

IV. QUANTUM POSITION VERIFICATION SECURITY

To cheat in the (1D-)QPVBB84 protocol, a coalition
{M1,M2} needs that both its members guess the same
string X from different informations, with only 1 round
of classical communication. If we only consider M2’s
output, the problem is exactly the same as the WSE proto-
col in the NEM. In other words, if M1,M2 know a cheat-
ing strategy for QPVBB84, they can use it with the same

resources (i.e. the same state Φ) to cheat on WSE in the
NEM. We can therefore directly transpose to QPVBB84 the
bound given above for WSE.
V. CONCLUSION

We have shown the security of the practical proto-
col QPVBB84 in 1D against a coalition of cheaters shar-
ing an entangled state of max- relative entropy of en-
tanglement Emax(Φ) ≤ n−O(log n). This bound is the
best known to date for a QPV protocol and is essentially
tight for QPVBB84, since an attack using n−O(1) ebits is
known.
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