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We use the entanglement sampling techniques developed in (Dupuis et al.} 2015) to find a
lower bound on the entanglement needed by a coalition of cheater attacking the quantum
postition verification protocol using the four BB84 states (QPVppgs) in the scenario where the
cheaters have no access to a quantum channel but share a (possibly mixed) entangled state
@. For a protocol using 1 qubits, a necessary condition for cheating is that the max- relative
entropy of entanglement Emax(®) > n — O(logn). This improves previously known best
lower bound by a factor ~ 4, and it is essentially tight, since it is vulnerable to a teleportation

based attack using n — O(1) ebits of entanglement.

Technical paper : arXiv:1504.07171

I. CONTEXT AND PREVIOUS WORK ON POSITION
VERIFICATION CRYPTOGRAPHY

The very first (classical) position verification (PV) pro-
tocols have been distance bounding protocols, intro-
duced in 1993 (Brands and Chaum) [1994) to prevent
man-in-the-middle attacks. However, these protocols
only work in some situations, and PV protocols by a
coalition of distant verifiers {V;} are more useful, as
they allow to build localized authentication protocol,
but also many other cryptographic applications, like
key distribution at a specific place (Chandran et al|
2009). However, (Chandran ef al.,2009) have shown that
no classical PV protocol can be computationally secure
against a coalition {M;} of malicious provers.

Quantum position verification (QPV) protocols ap-
peared the next year in the scientific literature, with pub-
lications of three independent teams (Buhrman et al)
2014; [Chandran et al., 2010; Kent et al} 2011} 2006}
Malaney, 2010alb). Even in the quantum case, uncon-
ditional security is unatainable (Buhrman et al., [2014);
a universal attack using an exponential amount of en-
tanglement is known (Beigi and Konig) [2011). To guar-
antee the security of a QPV protocol one either needs a
computational hypothesis (Unruh} 2014) or a bound on
the quantum entanglement shared between the cheaters
(Beigi and Konig), 2011; Buhrman et al., 2014; |Lau and
Lo, 2011; Tomamichel ef al., 2013).

The present work is in the latter framework, where
the cheating coalition {M;} only has access to a limited
amount of entanglement. Despite the exponential uni-
versal attack, the best lower bounds found so far have
been linear (Beigi and Konig) 2011; Tomamichel et al.,
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2013). To our knowledge, the protocol showing the best
security in this framework is an expermentally imprac-
tical protocol, QPVyuBs, proposed in (Beigi and Konig),
2011): a n-qubits implementation of QPVyups is secure
against adversary holding less that /2 ebits.

QPVpgs4, introduced in (Buhrman et al., 2014} |(Chan-
dran ef al.,[2010), is experimentally much simpler since it
essentially uses quantum key distribution components,
and (Tomamichel et al., 2013) have proved its security
against adversary holding less than — log, (cos?(7t/8)) -
n ~ 0.22845 - n ebits of entanglement. We improve this
bound to n — O(log n) ebits. Since a teleportation-based
explicit attack using n — O(1) ebits is known (Kent et al.,
2011;|Lau and Lo} 2011), this bound is tight.

Our argument is essentially that the winning condi-
tions in QPVppgs, for a cheating coalition {Mq, M, }, are
essentially the same as the cheating condition of weak
string erasure (WSE) in a variant of the noisy storage
model (NSM), with supplementary conditions (M; also
has to guess the string). QPVppg4 is therefore harder to
defeat than WSE in the NSM, and we can adapt the se-
curity proof of WSE given in (Dupuis ef al., 2015) to our
case.

Il. MIN-ENTROPY AND MAX- RELATIVE ENTROPY OF
ENTANGLEMENT

As usual in the security proof of such a quantum cryp-
tographic procedure, the security is ensured by a lower
bound on the conditonal min-entropy of entanglement
Hmin(X|B) where X is the classical bit-string to guess
and B the (quantum and classical) information acces-
sible to the cheater. This quantity is the logarithm of
the winning probability of the cheater, a linearly increas-
ing Hyn corresponding to an exponentially decreasing
cheating probability.

The relevant figure of merit of the bipartite quan-
tum state @ shared by the cheaters is the max- relative
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entropy of entanglement En,y, introduced by (Dattal
2009). This entanglement monotone is closely related to
Hpin, and can be used to lower-bound it, since, for any
bipartite system AB,

Hmin(A|B)p = *Emax(A} B)p

Ill. WEAK STRING ERASURE AND ENTANGLEMENT
SAMPLING

To cheat in a WSE in the NSM, Bob has to guess the n
bits of X, with two informations :

e a noisy quantum memory B, wher he had previ-
ously stored quantum (and classical) information
about of n-qubits encoding X in an unknown BB84
basis;

e The basis information ®. He only learned © after
the imperfections of the memory have taken effect.

(Dupuis et al.,2015) use an entanglement sampling argu-
ment to bound Hpin (X|®B) by a monotonous function
7 of Hpin(A|©B), the min-entropy in the equivalent en-
tangled protocol, taken before Alice measures A to get
X.

If we replace the quantum channel modeling the
memory by a bipartite state, ®, we are in a slightly dif-
ferent security model, the noisy entanglement model
(NEM), but we can still use the same reasoning. We
can also bound Hpin (A|®B) by —Emax(A; ®B) and use
a monotony argument to bound the latter by —Emax ().

This allows us to show a lower bound on the entang]le-
ment needed to cheat for the WSE protocol with a proba-
bility at least «.

Emax(®) <n—s—nh(3) < n—slog,n+slog, 5

where s := 1 — 2log,, e is the basis of the natural loga-
rithm, and h(a) := —alog, & — (1 — a)log, (1 — «) is the
binary entropy function.

IV. QUANTUM POSITION VERIFICATION SECURITY

To cheat in the (1D-)QPVppss protocol, a coalition
{M1, M3} needs that both its members guess the same
string X from different informations, with only 1 round
of classical communication. If we only consider M’s
output, the problem is exactly the same as the WSE proto-
col in the NEM. In other words, if M1, M, know a cheat-
ing strategy for QPVppgs, they can use it with the same

resources (i.e. the same state ®) to cheat on WSE in the
NEM. We can therefore directly transpose to QPVpggs the
bound given above for WSE.

V. CONCLUSION

We have shown the security of the practical proto-
col QPVppgs in 1D against a coalition of cheaters shar-
ing an entangled state of max- relative entropy of en-
tanglement Epmax (®) < n — O(logn). This bound is the
best known to date for a QPV protocol and is essentially
tight for QPVppss, since an attack using n — O(1) ebits is
known.
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