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The squash operation, or the squashing model, is a useful mathematical tool for proving the
security of quantum key distribution systems using practical (i.e., non-ideal) detectors. At the
present, however, this method can only be applied to a limited class of detectors, such as the
threshold detector of the Bennett-Brassard 1984 type. In this presentation, we generalize this
method to include multi-partite measurements, and show how it can be applied to a wider class
of detectors. We demonstrate the effectiveness of this generalization by applying it to the security
proof of the Ekert 1991 protocol using any memoryless detectors. The result is that the Ekert 1991
protocol achieves the device-independent security, and simultaneously the same high key generation
rate as in the implementation using ideal qubit detectors. For proving this result we use two physical
assumptions, namely, that quantum mechanics is valid, and that Alice’s and Bob’s detectors are
memoryless.

Quantum key distribution (QKD) [1] is a technique for
distributing information-theoretically secure secret keys
between two parties connected by a quantum channel.
Beginning from the Bennett-Brassard 1984 (BB84) [1],
and the Ekert 1991 protocols [2], there is now a variety
of protocols proposed, e.g., [3–6]. Several different ap-
proaches have been advanced for proving the security of
QKD systems using the ideal qubit detectors [7–9].
The squash operation, or the squashing model, is a

useful mathematical tool for proving the security of QKD
systems using practical (i.e., non-ideal) detectors [10, 11].
Once its existence is proved for a given practical detector,
one can incorporate it into a conventional type of security
proof where receivers have ideal qubit detectors, and au-
tomatically obtains a new proof that remains valid even
if the practical detectors are used. The squash operation
literally squashes an incoming state a qubit, and also has
a property that, when followed by qubit measurements,
it acts exactly the same way as the practical detector. In
security proofs, there is no loss of generality in supposing
that the squash operation is conducted by the attacker,
and as the result of that, the security of a protocol using
practical detectors is reduced to that using ideal qubit
detectors.
A type of squash operation was first assumed in the

security proof by Gottesman et al. [12], however, its ex-
istence was only conjectured, no proof was given. The
first proof was given by one of the present authors and
Tamaki [10], for the case of the threshold detector of the
BB84 type measurement. This result was also verified in-
dependently by Beaudry, Moroder, and Lütkenhaus [11].
There were also attempts toward constructing squash op-
erations for a wider class of practical detectors. For ex-
ample, Ref. [11] gave an explicit condition for the exis-
tence of a squash operation, and used it to show positive
and negative results on the six-state protocol. In Ref.
[13], one of the present authors discussed whether sym-
metries of a given detector can imply the existence of the

squash operation corresponding to it, and also showed
that the above result on the BB84 type measurement is
valid even for multi-mode cases. However, for other types
of detectors, e.g., homodyne measurements, the squash
operation is not known to exist.

In this presentation (and its arXiv version [14]), we
demonstrate that the situation changes drastically by
considering a generalized case where multi-partite mea-
surements are involved. That is, while all previous stud-
ies on the squash operation were concerned only with
detectors used by a single player, we here consider a
generalization including global measurements performed
jointly by two players or more, such as the Clauser-
Horne-Shimony-Holt (CHSH) measurement [15], used,
e.g., in the E91 protocol. This approach allows us to
relax mathematical conditions required for the existence
of the squash operation, such that they can be fulfilled
for a wider class of detectors. Perhaps this is most eas-
ily illustrated by considering the CHSH measurement as
an example. If one regards the CHSH measurement as
a mixture of local x, z-basis measurements performed by
Alice and Bob, there are two basis for each player, which
together yield four conditions that the squash operation
has to satisfy. On the contrary, if one regards the same
measurement as one global measurement, there is no ba-
sis choice, and thus only one condition required for the
existence of the squash operation.

As an evidence of the effectiveness of this generaliza-
tion, we apply it to the E91 protocol using any detec-
tors, and show that it achieves the same high key gen-
eration rate as in the same protocol implemented with
ideal qubit detectors [14]. In other words, we show
that the E91 protocol achieves the device-independent
security, and simultaneously the high key generation
rate R as in the ideal device-dependent implementation:
R = 1 − (1 + fec)h(p), with p being quantum error rate
(QBER), h(p) the binary entropy, and fec the efficiency
of error correction. Hence when the optimal error cor-
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recting code with fec = 1 is available, one can generate
the secret key with QBER up to 11%. This key rate
is higher than in any of the existing literature on device-
independent QKD [16–20], and in fact the highest known
for any QKD protocols with one-way post-processing, in-
cluding device-dependent ones. For obtaining this result,
we use two physical assumptions. Namely, we assume
that quantum mechanics is valid, and that Alice’s and
Bob’s detectors are memoryless, i.e., different detectors
operate on different Hilbert spaces. In comparison with
the existing literature, our assumptions are weaker than
that of Ref. [16], where collective attacks are assumed,
but stronger than in Refs. [18–20], where detectors are
not necessarily memoryless, and also stronger than in
Ref. [17], which does not assume quantum mechanics.
Our security proof of the E91 protocol proceeds as fol-

lows. In the first step, we convert the E91 protocol using
arbitrary detectors into a simplified version where un-
characterized qubit detectors are used. For this purpose
we borrow the technique used in Ref. [16], and the re-
sult is that, without loss of security, we may restrict our-
selves to a protocol where Alice and Bob use qubit de-
tectors, parameterized by complex numbers α, β. In the
next step, we eliminate the α, β-dependence by apply-
ing a bipartite squash operation Fα,β , which is designed
such that the CHSH measurement, jointly performed by
Alice and Bob, is transformed to the phase error mea-
surement of the BB84 type, also jointly performed by
the two players. Fα,β is also designed so that it leaves
Alice’s sifted-key measurement unchanged. As a conse-
quence, the original E91 protocol is transformed to the
BB84 protocol, which can readily be shown secure by re-
ferring to the existing literature, e.g., [7, 21–23]. Further
details can be found in our full paper [14].

The crucial observation here is that the minimum en-
tropy of Alice’s sifted key depends only on the results of
Alice’s sifted-key measurement, and of the CHSH mea-
surements on sample pulses. No other measurements af-
fect the sifted key as they are performed locally and re-
motely from it. Hence for proving the security of the E91
protocol, it suffices to find a squash operation that prop-
erly transforms the CHSH and Alice’s sifted-key mea-
surement. While the previous formulation based on the
one-partite squash operation demands four conditions,
corresponding to Alice’s and Bob’s choices of x, z basis,
which cannot be fulfilled in general, the bipartite gener-
alization demands only two. This is why this new setting
realizes the security proofs that were not possible previ-
ously.

All the details of our results are given in our arXiv
version [14], which is constructed as follows. In Section
II of [14], we review basic concepts regarding quantum
key distribution, including typical setting of QKD proto-
cols, the corresponding security criteria, and the previous
method of security proof using the squash operation. In
Section III, we give definition of the squash operation in
multi-partite cases, and then sketch roughly how it can be
used to prove of device-independent security of the E91
protocol. Section IV is devoted to the exact mathemat-
ical statements corresponding to the device-independent
security of the E91 protocol. That is, we elaborate on
the version of the E91 protocol under consideration, and
then claim its device-independent security as a theorem.
In Section V we give the proof of the theorem.
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