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We propose the continuous-variable quantum key distribution protocol based on the Gaussian modulation
of a single quadrature of the coherent states of light, which is aimed to provide simplified implementation
compared to the symmetrically modulated Gaussian coherent-state protocols. The protocol waives the necessity
in phase quadrature modulation and the corresponding channel transmittance estimation. The security of the
protocol against collective attacks in a generally phase-sensitive Gaussian channels is analyzed and is shown
achievable upon certain conditions. Robustness of the protocol to channel imperfections is compared to that
of the symmetrical coherent-state protocol. The simplified unidimensional protocol is shown possible at a
reasonable quantitative cost in terms of key rate and of tolerable channel excess noise.
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I. INTRODUCTION

Quantum key distribution (QKD) ensures the security of
a secret key through the very nature of quantum states dis-
tributed between trusted parties. Recent developments in this
field are concerned with the continuous-variables (CV) cod-
ing of key bits, [1–11] in particular, the Gaussian modulation
of coherent states of light [6–10] is promising experimentally
[9, 10]. The main goal of the present paper is to propose a
further simplification of these coherent state protocols.

In particular, almost all published coherent-state proto-
cols suppose a symmetrical amplitude and phase quadrature
modulation. In the present paper we propose the unidimen-
sional (UD) CV QKD protocol based on the Gaussian single-
quadrature modulation, which reduces the experimental needs
of the emitter to a single intensity modulator, instead of both
a phase and an intensity modulator. Our paper thus continues
the tendency of technical simplification of the QKD protocols
which was started in [12], where low cost and compact dis-
crete variable QKD system was proposed.

II. UNIDIMENSIONAL PROTOCOL

The central idea of the protocol is to modulate a single
quadrature of coherent states. This should provide simpli-
fied implementation, at the price of slightly degraded perfor-
mances, as we show below. One of the trusted sides, Al-
ice, produces coherent states, and then modulates one of the
quadratures (x), displacing each coherent state according to
a random Gaussian variable of variance VM . The mixture of
the modulated states thus forms a “sausage” on a phase-space
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FIG. 1. (Color online) Scheme of the UD coherent-state protocol.
Alice prepares a coherent state using a laser source and displaces it
along the x-quadrature using modulator M. The states travel through
an untrusted, generally phase-sensitive, channel to a remote party
Bob, who performs homodyne measurement of the x-quadrature. (a)
Mixture of modulated coherent states on a phase-space. (b) Equiva-
lent entanglement-based scheme using a two-mode squeezed vacuum
source, mode A is measured by Alice using a homodyne detector,
mode B is squeezed on the squeezer S and sent to channel.

[see Fig. 1 (a)]. The states are then sent to the remote trusted
party Bob through a generally phase-sensitive channel. Bob
performs homodyne measurement of the modulated quadra-
ture, measuring most of the time the x-quadrature, and some-
times measuring the p-quadrature. After sufficient number of
runs, Alice and Bob analyze the security from both quadrature
statistics and extract a secret key from the x-quadrature data.

III. SECURITY OF THE PROTOCOL

We compute the asymptotic secret key rate of our protocol
against collective attacks. The optimality of Gaussian attacks
[14, 15] allows us to use well known formulas to compute the
secret key rate from the covariance matrix.

To analyze the security of the protocol we switch to the
equivalent entanglement-based (EPR) scheme. For the UD
protocol such scheme can be built, by taking a two-mode
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FIG. 2. Physicality (solid line) and security (dashed line) regions of
the UD protocol. The pessimistic value of Cp, which minimizes the
key rate, is given as a bold solid line. Modulation variance VM = 10,
channel transmittance in x: ηx = 0.1, noise in x: εx = 5% SNR. A
is the vertex of the parabola. The lines 1, 2 and 3 correspond to the
key rate dependencies given in Fig. 3.
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FIG. 3. Key rate secure against collective attacks versus correlation
Cp for different values of variance V B

p , corresponding to the lines
1, 2 and 3 in Fig. 2. Inset demonstrates the dependence of line 2 in
the smaller scale. For comparison the line corresponding to V B

p =
1.00535 is given as dashed, demonstrating the particular case when
the security is lost and then restored.

squeezed vacuum state of variance V and squeezing one of
its modes with the squeezing parameter − log

√
V , giving us

an initial covariance matrix.
As the states travels through the untrusted channel, the co-

variance matrix is transformed. However, since there is no
modulation in the p quadrature, the correlation in p cannot be
estimated. Bob only measures the variance Vp of the channel
output in p, and the parameter Cp = 〈pApB〉 of the covari-
ance matrix is unknown, which prevents a direct computation
of the key rate K.

However, this unknown parameter is bounded by the
Heisenberg uncertainty principle, which bounds the possible
covariance matrices [13]. It therefore imposes physical con-
straints onCp; the only allowed values being inside a parabola
in the {V Bp , Cp} plane. One can also analytically derive the
lower bound on the key rate and find the security bounds in
terms of unknown correlation Cp upon given (measured) V Bp .
The corresponding physicality and security regions in terms
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FIG. 4. Typical dependence of the key rate on loss (in dB scale) upon
symmetric channel excess noise ε = 5% SNU. Solid line: symmet-
rical coherent protocol; dashed-line: UD protocol with correlation
estimation in p; dotted line: UD protocol without correlation estima-
tion in p. Modulation variance VM = 100.

of Cp are shown on Fig. 2.
It is evident from the graph, that there exists a region of

V Bp , where the protocol is secure for any Cp. In this region,
no physically valid collective attack can break the security.
For higher values of V Bp the protocol cannot be implemented,
since it would only be secure for some values of Cp, but Alice
and Bob cannot estimate the latter quantity. Such a behavior
can be clearly observed at the graphs in Fig. 3. When the
channel excess noise εx > 0 increases, the physicality region
expands, which allows Eve to perform stronger attacks.

Counter-intuitively, the key rate is not always a monotonous
function of the correlation |Cp|. Indeed, it can be seen from
Fig. 3 that upon certain values of variance V Bp the lower
bound on the key rate can have a local minimum within the
security region. Moreover, the security can be even lost and
restored (see the dashed line at the inset in Fig. 3).

However, when the channel excess noise in p is small, the
key rate is a monotonous function of the correlation |Cp| (as
can be also seen in Fig. 3) in most of the physicality region,
and the pessimistic value for Cp is typically the highest phys-
ically valid negative value Cmax

p .
As the noise increases, the pessimistic value of Cp gets

lower thanCmax
p and must be found numerically. It is given as

bold line in Fig. 2. In this case, a key rate computed atCmax
p is

greater than the lower bound on the real key rate and is there-
fore too optimistic. However, even when the pessimistic value
of Cp is inside the parabola, This upper bound, which can be
computed analytically, is often a good approximation.

IV. PERFORMANCE FOR SYMMETRIC CHANNELS

In typical communication channels, one expects values of
loss and excess noise in both quadratures to be symmetric.
In the limit of strong modulation this bound on the key rate
becomes

Ksym
VM→∞
η�1

. ( 13 −
√
2ε)η log e
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FIG. 5. Typical profile of the security region in terms of maximal tol-
erable channel excess noise ε versus channel loss (in dB scale). Solid
line: symmetrical coherent protocol; dashed-line: UD protocol with
channel estimation in p; dotted line: UD protocol without channel es-
timation in p; dot-dashed line: optimistic evaluation of UD protocol
without channel estimation in p assuming Cp = Cmax

p . Modulation
variance VM = 100.

This equation describes well the the key rate if the losses or
noise in the channel are low, otherwise providing a rough up-
per bound.

We now compare the UD CV QKD protocol with the stan-
dard symmetrical modulation protocol GG02 [6, 7, 14, 15]
used over the same channel. We first assume a noiseless lossy
channel, where ε = 0. In this case, Cp is known, and the exact
key rate for our protocol can be computed. For VM → ∞, in
the low transmission limit rate is η

3 log e, slightly smaller than
the key rate of the standard coherent-state protocol (η2 log e)
[16].

In the general case, however, the channel noise reduces the
security of the protocol. The results of the calculations in this
case are given in Fig. 4 in terms of key rate upon fixed chan-
nel excess noise and in Fig. 5 in terms of the maximum toler-
able channel excess noise versus channel loss. Evidently, the
UD protocol demonstrates higher sensitivity to channel ex-
cess noise, which is the cost of technical simplification, but

still provides a reasonable security region in terms of channel
excess noise. The approximation Cp := Cmaxp is given as the
dot-dashed line in Fig. 5.

For the sake of comparison we also analyzed the protocol,
in which no information is extracted from p-quadrature, but
some modulation and measurement is performed to estimate
the channel the correlation in p. This intermediate protocol
lays in between the symmetrical and completely asymmetri-
cal counterparts, but requires modulation in both quadratures.
It main interest it theoretical, since it allows to split the origin
of the performance degradation of our protocol compared to
GG02 between the degradation due to the asymmetric modu-
lation and the one due to incomplete channel estimation.

V. SUMMARY AND CONCLUSIONS

We have proposed and investigated the unidimensional
continuous-variable quantum key distribution protocol based
on the Gaussian modulation of a single quadrature of coher-
ent states of light, in which physicality bounds enable to limit
the eavesdropping attacks and assess the security region. The
protocol allows simpler technical realization with no need of
phase quadrature modulation and full channel estimation at
the cost of lower key rate and higher sensitivity to channel ex-
cess noise, compared to symmetrical coherent-state protocol.
However, the performance of the protocol is still comparable
to that of the symmetrical counterpart and allows for the prac-
tical implementation.
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