Additivity in Classical and Quantum Shannon Theory

Graeme Smith
IBM TJ Watson Research Center

Joint work with
Andrew Cross and Ke Li

October 1, 2015
QCRYPT 2015, Tokyo, Japan
Information theory: sending, storing, processing data

\[\rho_{AB} \]

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
</table>

\[|\phi_2\rangle_{AB} \]

\[E \rightarrow D \]

Shared Secret Key

Eve, the Eavesdropper
Entropies quantify the answers

- \(H(X) = - \sum_x p_x \log p_x \)
- \(H(\rho) = -\text{Tr} \ \rho \log \rho \)

- Optimal Compression: \(H(X) \)
- Schumacher Compression: \(H(\rho) \)
- Classical Channel capacity: \(\max I(X;Y) \)
 \[I(X;Y) = H(X) + H(Y) - H(XY) \]
- Quantum Communication: \(H(B) - H(E) \)
- Private capacity: \(I(V;B)-I(V;E) \)
- Strong Subadditivity:

\[I(A;B|C) = H(AC) + H(BC)-H(ABC)-H(C) \geq 0 \]
Additivitity lets us calculate answers

\[C(\quad) \otimes \quad = \ C(\quad) + C(\quad) \]

Classical Capacity of Classical Channel
Nonadditivity is the rule
Especially quantumly

Blessing: Better rates for classical and quantum communication.

Curse:
Mostly don’t know capacities, distillable entanglement, etc.
Have upper and lower bounds that are far apart.
Noisy Quantum Channels

• Noiseless quantum evolution: \(\rho \rightarrow U \rho U^\dagger \)

 Unitary satisfies \(U^\dagger U = I \)

• Noisy quantum evolution: unitary interaction with inaccessible environment

\[
f(\mathcal{N}) = \max_{\phi V_1 \ldots V_n A} f(\mathcal{N}, \phi V_1 \ldots V_n A)
\]
Untangling Additivity

\[f(\mathcal{N}) = \max_{\phi_{V_1 \cdots V_n A}} f(\mathcal{N}, \phi_{V_1 \cdots V_n A}) \]

\[f(\mathcal{N}, \phi_{V_1 \cdots V_n A}) = \sum_{s \in \mathcal{P}(V_1 \cdots V_n \text{BE})} \alpha_s H(s) \]

Basically all additivity proofs do this:
Take \(\phi_{12} \) that gives a value \(f(\mathcal{N} \otimes \mathcal{M}, \phi_{12}) \)

1) Decoupling: \(\phi_{12} \rightleftharpoons \phi_1 \)

2) Apply strong subadditivity to show:
\[f(\mathcal{N} \otimes \mathcal{M}, \phi_{12}) \leq f(\mathcal{N}, \phi_1) + f(\mathcal{M}, \phi_2) \]

Goal: classify entropic additive formulas of this sort “uniformly additive”
All uniformly additive entropy formulas

“All the Formulas That’s Fit to Print”

One Auxiliary Variable:

<table>
<thead>
<tr>
<th>case</th>
<th>(a,b)</th>
<th>M_1</th>
<th>M_2</th>
<th>equivalents</th>
<th>Additive Cone</th>
<th>Extreme Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(3,3)</td>
<td>$B_1 E_1$</td>
<td>$B_2 E_2$</td>
<td>(0,0)</td>
<td>$\alpha_V + \alpha_{BV} + \alpha_{EV} \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{BV} \geq 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{EV} \geq 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(3,2)</td>
<td>$B_1 E_1$</td>
<td>E_2</td>
<td>(2,3), (3,1), (1,3), (1,0), (0,1), (2,0), (0,2)</td>
<td>$\alpha_{BV} \leq 0$</td>
<td>$-H(BE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{BV} \geq 0$</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(3,0)</td>
<td>$B_1 E_1$</td>
<td>ϕ</td>
<td>(0,3)</td>
<td>$\alpha_{EV} \leq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_{BV} \leq 0$</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>(1,1)</td>
<td>B_1</td>
<td>B_2</td>
<td>(2,2)</td>
<td>$\alpha_{EV} = 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_{BV} \geq 0$</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>(1,2)</td>
<td>B_1</td>
<td>E_2</td>
<td>(2,1)</td>
<td>$\alpha_{BEV} \geq 0$</td>
<td>$\pm[H(EV) - H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td></td>
</tr>
</tbody>
</table>

Rest of talk: explain how to get this table and what it means.
Outline

- Standard Additivity Proofs
- Results: all uniformly additive formulas
- Completely coherent information: a new additive quantity
- Further Observations
Canonical example: Entanglement Assisted Capacity

• Entanglement assisted capacity:

$$C_{ea}(\mathcal{N}) = \max_{\phi_{VA}} I(V;B)$$

with $$I(V;B) = H(V)+H(B)-H(VB).$$

$$C_{ea}(\mathcal{N} \otimes \mathcal{M}) = C_{ea}(\mathcal{N}) + C_{ea}(\mathcal{M})$$

Proof:
Let $$\phi_{VA_1A_2}$$ be optimal for $$C_{ea}(\mathcal{N} \otimes \mathcal{M}).$$

$$I(V; B_1B_2) = I(V; B_1) + I(V; B_2|B_1)$$

$$= I(V; B_1) + I(VB_1; B_2) - I(B_1; B_2)$$

$$\leq I(V; B_1) + I(VB_1; B_2) \leq C_{ea}(\mathcal{N}) + C_{ea}(\mathcal{M})$$
Two key steps

- Decoupling

\[
\phi_{V_{A_1 A_2}} \quad \Rightarrow \quad \hat{\phi}_{V A_2} = \phi_{V B_1 | A_2}
\]

\[
\tilde{\phi}_{V A_1} = \phi_{V A_1}
\]

- Entropy inequality

\[
I(V; B_1 B_2) = I(V; B_1) + I(V; B_2 | B_1)
\]

\[
= I(V; B_1) + I(V B_1; B_2) - I(B_1; B_2)
\]

\[
\leq I(V; B_1) + I(V B_1; B_2) \leq C_{ea}(\mathcal{N}) + C_{ea}(\mathcal{M})
\]
Standard Decouplings

\[\phi_{VA_1A_2} \]

\[\tilde{\phi}_{\bar{V}A_1} \]

\[\phi_{\bar{V}A_2} \]
Standard Decouplings

\[\tilde{\phi}_{V A_1} \]

What to do with \(A_2 \)?
Standard Decouplings

What to do with A_2?
Standard Decouplings

\[\phi_{\tilde{V}A_1} \]

\[\phi_{V A_1 A_2} \]

\[\phi_{\tilde{V} A_2} \]

Make \(\tilde{V} \) out of these
Standard Decouplings

\[\phi_{VA_1A_2} \rightarrow \tilde{\phi}_{\tilde{V}A_1} \]

\[\phi_{VA_1A_2} \rightarrow \hat{\phi}_{\hat{V}A_2} \]

Diagram:

- \(\phi_{VA_1A_2} \)
- \(V \)
- \(A_1 \)
- \(A_2 \)
Standard Decouplings

\[\phi_{\hat{V}A_1} \rightarrow \phi_{\hat{V}A_1} \]

\[\phi_{VA_1 A_2} \rightarrow \phi_{\hat{V}A_2} \]

\[\hat{\phi}_{\hat{V}A_1} \]

\[\hat{\phi}_{\hat{V}A_2} \]

\[V \]

\[B_2 \]

\[E_2 \]

Make out of these \(\hat{V} \)
Two key steps

• Decoupling

\[\hat{\phi}_{VA_2} = \phi_{VB_1|A_2} \]

\[\tilde{\phi}_{VA_1} = \phi_{VA_1} \]

• Entropy inequality

\[
I(V; B_1B_2) = I(V; B_1) + I(V; B_2|B_1) \\
= I(V; B_1) + I(VB_1; B_2) - I(B_1; B_2) \\
\leq I(V; B_1) + I(VB_1; B_2) \leq C_{ea}(N) + C_{ea}(M)
\]
Entropic Inequalities

Strong subadditivity:

\[I(A;B|C) = H(AC) + H(BC) - H(ABC) - H(C) \geq 0 \]

Also:

\[H(A|C) + H(A|D) \geq 0 \]

There may be more, but we don’t know them.
Entropy inequalities

- For n systems $A_1 \ldots A_n$, there are $2^n - 1$ different entropies:
 $$(H(A_1), \ldots, H(A_n), H(A_1 A_2)\ldots, H(A_1 \ldots A_n))$$

- Not all vectors can be realized. Realizable vectors form a cone.
- Cone bounded by various planes defined by strong subadditivity.
- Can test if an identity is satisfied by Linear Programming.
- There are other “non-Shannon” classical inequalities, but for quantum we don’t know (though there probably are).
Outline

• Standard Additivity Proofs
• Results: all uniformly additive formulas
• Completely coherent information: a new additive quantity
• Further Observations
Entropic formulas

\[f_\alpha(\mathcal{N}, \phi_{V_1...V_nA}) = \sum_{s \in \mathcal{P}(V_1...V_nBE)} \alpha_s H(s) \]

Fix a standard decoupling \(\phi_{V_1A_1A_2} \rightarrow (\tilde{\phi}_{\tilde{V}_1A_1}, \hat{\phi}_{\hat{V}_1A_2}) \)

\[
\Delta \left(f_\alpha, U_{N_1}, U_{N_2}, \phi_{V_1...V_nA_1A_2}, \tilde{\phi}_{\tilde{V}_1...\tilde{V}_nA_1}, \hat{\phi}_{\hat{V}_1...\hat{V}_nA_2} \right) = \\
f_\alpha(U_{N_1}, \tilde{\phi}_{\tilde{V}_1...\tilde{V}_nA_1}) + f_\alpha(U_{N_2}, \hat{\phi}_{\hat{V}_1...\hat{V}_nA_2}) - f_\alpha(U_{N_1} \otimes U_{N_2}, \phi_{V_1...V_nA_1A_2})
\]

Find \(\alpha \) such that \(\Delta(f_\alpha) \geq 0 \) for all \(N_1, N_2, \phi_{V_1...V_nA_1A_2} \).
Zero Auxiliary Variables

\[f_\alpha(N, \phi_A) = \alpha_B H(B) + \alpha_E H(E) + \alpha_{BE} H(BE) \]

Decoupling: \(\phi_{A_1 A_2} \rightarrow (\phi_{A_1}, \phi_{A_2}) \)

\[\Delta(\alpha, \phi_{A_1 A_2}) = f_\alpha(N_1, \phi_{A_1}) + f_\alpha(N_2, \phi_{A_2}) - f_\alpha(N_2, \phi_{A_1 A_2}) \]
\[= \alpha_B I(B_1; B_2) + \alpha_E I(E_1; E_2) + \alpha_{BE} I(B_1 E_1; B_2 E_2) \]

When is \(\Delta(\alpha, \phi_{A_1 A_2}) \geq 0? \)
Zero Auxiliary Variables

When is $\Delta(\alpha, \phi_{A_1A_2}) \geq 0$?

Rays

$$f_\alpha = \lambda_1 H(B) + \lambda_2 H(E) + \lambda_3 H(B|E) + \lambda_4 H(E|B)$$

$$\lambda_i \geq 0$$

Faces

$$\alpha_B + \alpha_{BE} \geq 0$$
$$\alpha_E + \alpha_{BE} \geq 0$$
$$\alpha_B + \alpha_E + \alpha_{BE} \geq 0$$
$$\alpha_{BE} \geq 0.$$

Anything inside the cone is uniformly additive.

Outside the cone, there is a state that makes $\Delta < 0$

To show, find state that makes, e.g.,

$$\Delta = \alpha_B + \alpha_{BE}$$
One Auxiliary Variable

Enough to consider

\[f^V_\alpha (\mathcal{N}, \phi_{VA}) = \alpha_V H(V) + \alpha_{BV} H(BV) + \alpha_{EV} H(EV) + \alpha_{BEV} H(BEV) \]

Fix a standard decoupling:

\[\tilde{V} \in \{ V, B_2V, E_2V, B_2E_2V \} \quad \text{and} \]

\[\hat{V} \in \{ V, B_1V, E_1V, B_1E_1V \} \]

These are labeled by \((a, b)\) \(a, b = 0...3\)

Define \(\Delta_{(a,b)}(\alpha^V)\), find \(\alpha^V = (\alpha_V, \alpha_{BV}, \alpha_{EV}, \alpha_{BEV})\) with \(\Delta_{(a,b)} \geq 0\).

This gives a cone of additive functions for each \((a,b)\)
One Auxiliary Variable

<table>
<thead>
<tr>
<th>case</th>
<th>(a,b)</th>
<th>\tilde{M}_1</th>
<th>\tilde{M}_2</th>
<th>equivalents</th>
<th>Additive Cone</th>
<th>Extreme Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(3,3)</td>
<td>B_1F_1</td>
<td>B_2E_2</td>
<td>(0,0)</td>
<td>$\alpha_V + \alpha_{BV} + \alpha_{EV} \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{BV} \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{EV} \geq 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td>$-H(V</td>
</tr>
<tr>
<td>2.</td>
<td>(3,2)</td>
<td>B_1E_1</td>
<td>E_2</td>
<td>(2,3), (3,1)</td>
<td>$\alpha_{BV} \leq 0$</td>
<td>$-H(BE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1,3), (1,0), (0,1)</td>
<td></td>
<td>$\pm H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2,0), (0,2)</td>
<td>$\alpha_V + \alpha_{BV} \geq 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td>3.</td>
<td>(3,0)</td>
<td>B_1F_1</td>
<td>ϕ</td>
<td>(0,3)</td>
<td>$\alpha_{EV} \leq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_{BV} \leq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\pm H(BE</td>
</tr>
<tr>
<td>4.</td>
<td>(1,1)</td>
<td>B_1</td>
<td>B_2</td>
<td>(2,2)</td>
<td>$\alpha_{EV} = 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_{BEV} \geq 0$</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>(1,2)</td>
<td>B_1</td>
<td>E_2</td>
<td>(2,1)</td>
<td>$\alpha_{BEV} \geq 0$</td>
<td>$\pm [H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td>$-H(E</td>
</tr>
</tbody>
</table>

\[f^V_{\alpha}(N, \phi_{VA}) = \alpha_V H(V) + \alpha_{BV} H(BV) + \alpha_{EV} H(EV) + \alpha_{BEV} H(BEV) \]
One Auxiliary Variable

Most general: \(f_\alpha = f_\alpha^\phi + f_\alpha^V \)

With

\[
f_\alpha^\phi = \lambda_1 H(B) + \lambda_2 H(E) \\
+ \lambda_3 H(B|E) + \lambda_4 H(E|B)
\]

\[
f_\alpha^V(N, \phi_{VA}) = \alpha_V H(V) + \alpha_{BV} H(BV) + \alpha_{EV} H(EV) + \alpha_{BEV} H(BEV)
\]
Many Auxiliary Variables

Most general: \(f_\alpha = f_\alpha^\phi + f_\alpha^{V_1} + f_\alpha^{V_2} + f_\alpha^{V_1 V_2} \)

Just pick each individual function from the appropriate row in the table.
Outline

• Standard Additivity Proofs
• Results: all uniformly additive formulas
• Completely coherent information: a new additive quantity
• Further Observations
Completely Coherent Information

<table>
<thead>
<tr>
<th>case</th>
<th>(a,b)</th>
<th>\tilde{M}_1</th>
<th>\tilde{M}_2</th>
<th>equivalents</th>
<th>Additive Cone</th>
<th>Extreme Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(3,3)</td>
<td>$B_1 E_1$</td>
<td>$B_2 E_2$</td>
<td>(0,0)</td>
<td>$\alpha_V + \alpha_{BV} + \alpha_{EV} \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td>2.</td>
<td>(3,2)</td>
<td>$B_1 E_1$</td>
<td>E_2</td>
<td>(2,3), (3,1)</td>
<td>$\alpha_{BV} \leq 0$, $\alpha_V + \alpha_{BV} \geq 0$</td>
<td>$-H(BE</td>
</tr>
<tr>
<td>3.</td>
<td>(3,0)</td>
<td>$B_1 F_1$</td>
<td>ϕ</td>
<td>(0,3)</td>
<td>$\alpha_{EV} \leq 0$, $\alpha_{BV} \leq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td>4.</td>
<td>(1,1)</td>
<td>B_1</td>
<td>B_2</td>
<td>(2,2)</td>
<td>$\alpha_{EV} = 0$, $\alpha_V \geq 0$, $\alpha_{BEV} \geq 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td>5.</td>
<td>(1,2)</td>
<td>B_1</td>
<td>E_2</td>
<td>(2,1)</td>
<td>$\alpha_{BEV} \geq 0$, $\alpha_V \geq 0$</td>
<td>$\pm [H(EV) - H(BV)]$, $H(E</td>
</tr>
<tr>
<td>case</td>
<td>(a,b)</td>
<td>\tilde{M}_1</td>
<td>\tilde{M}_2</td>
<td>equivalents</td>
<td>Additive Cone</td>
<td>Extreme Rays</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1.</td>
<td>(3,3)</td>
<td>B_1E_1</td>
<td>B_2E_2</td>
<td>(0,0)</td>
<td>$\alpha_V + \alpha_{BV} + \alpha_{EV} \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{BV} \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V + \alpha_{EV} \geq 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td>2.</td>
<td>(3,2)</td>
<td>B_1E_1</td>
<td>E_2</td>
<td>(2,3), (3,1)</td>
<td>$\alpha_{BV} \leq 0$</td>
<td>$-H(BE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1,3), (1,0), (0,1)</td>
<td>$\alpha_V \geq 0$</td>
<td>$\pm H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2,0), (0,2)</td>
<td>$\alpha_{EV} \geq 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td>3.</td>
<td>(3,0)</td>
<td>B_1E_1</td>
<td>ϕ</td>
<td>(0,3)</td>
<td>$\alpha_{EV} \leq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_{BV} \leq 0$</td>
<td>$-H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\pm H(BE</td>
</tr>
<tr>
<td>4.</td>
<td>(1,1)</td>
<td>B_1</td>
<td>B_2</td>
<td>(2,2)</td>
<td>$\alpha_{EV} = 0$</td>
<td>$-H(B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_{BEV} \geq 0$</td>
<td>$\pm [H(EV) - H(BV)]$</td>
</tr>
<tr>
<td>5.</td>
<td>(1,2)</td>
<td>B_1</td>
<td>E_2</td>
<td>(2,1)</td>
<td>$\alpha_{BEV} \geq 0$</td>
<td>$H(E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\alpha_V \geq 0$</td>
<td>$-H(E</td>
</tr>
</tbody>
</table>
Completely Coherent Information: Properties

\[I^{cc}(N) = \max_{\phi_{VA}} \left[H(VB) - H(VE) \right] \]

- Symmetric in B ↔ E
- Lower bound for cost of swapping B and E.
- Upper bound for simultaneous quantum communication rate to B and E
- For degradable channels, \(I^{cc}(N) = Q(N) = Q^{(1)}(N) \)
- WANT: cardinality bound on V
Generalizing Completely Coherent Information

We can replace the entropies in I^{cc} with any function $J(\rho)$ that satisfies:

- $J(\rho_{V1B1} \otimes \rho_{V2B2}) = J(\rho_{V1B1}) + J(\rho_{V2B2})$
- $F_J(N) = \max [J(VB) - J(VE)]$

Furthermore, if J is monotonic under CP maps, $F_J(N)$ doesn’t need auxiliary variable

J could be: renyi entropy, sandwiched entropy, (α, z)-entropies…
Connection to Symmetric Side Channels

Quantum capacity with symmetric zero-capacity channel
Additive upper bound for Q

\[
Q_{ss}(\mathcal{N}) = \frac{1}{2}[I(V_1; B|V_2) - I(V_1; E|V_2)]
\]
\[
= \frac{1}{2}[H(BV_2) - H(BV_1 V_2) - H(EV_2) + H(EV_1 V_2)]
\]
\[
= \frac{1}{2}[H(BV_2) - H(EV_2) + H(EV_1 V_2) - H(BV_1 V_2)]
\]
Connection to Symmetric Side Channels

Quantum capacity with symmetric zero-capacity channel
Additive upper bound for Q

\[Q_{ss}(\mathcal{N}) = (1/2)[I(V_1; B|V_2) - I(V_1; E|V_2)] \]
\[= (1/2)[H(BV_2) - H(BV_1V_2) - H(EV_2) + H(EV_1V_2)] \]
\[= (1/2)[H(BV_2) - H(EV_2) + H(EV_1V_2) - H(BV_1V_2)] \]
Outline

• Standard Additivity Proofs
• Results: all uniformly additive formulas
• Completely coherent information: a new additive quantity
• Further Observations
A Classical-Quantum Coincidence

- You can do this whole game for classical entropic formulas too.
- You get *exactly* the same set of uniformly additive functions.
- Could have been more, since there are more classical inequalities: $H(X|Y) \geq 0$
- But uniform additivity only uses strong subadditivity.
Further Directions

• Classically, there are additive functions that are not uniformly additive (e.g. H_{min})
• Single-letter entropic constraints that imply additivity of coherent information (informationally degradable). Only one?
• Applies to rate regions of multi-user information theory
• Constraint on states optimized over
Summary

• Additivity simplifies, but is rare
• Typical additivity proof has two steps:
 1) Decoupling 2) Apply entropy inequalities
• Uniform additivity: standard decoupling + entropy inequalities
• Classified all uniformly additive formulas
• Completely coherent information
Open Questions

• Constrained additivity: 1) constraints on channels 2) constraints on states
• Completely coherent information: operational meaning, cardinality bound
• Understand classical-quantum correspondence better. Coincidence?
• Apply to formulas with c-q states (χ, P)? Decoupling is a challenge there.
THANK YOU